Formulas and Constants

Thermochemistry

$$\Delta H^{\circ}_{rxn} = \Sigma n \Delta H^{\circ}(products) - \Sigma n \Delta H^{\circ}(reactants)$$

 $\Delta H^{\circ}_{rxn} = \Sigma n \Delta H^{\circ}$ (enthalpies of bonds broken) - $\Sigma n \Delta H^{\circ}$ (enthalpies of bonds formed)

$$q = mC_s(T_F - T_I)$$

Properties of Electromagnetic Radiation

$$E = hc/\lambda = hv$$

$$\lambda v = c$$

DeBroglie Relationship

$$\lambda = h/(mv)$$

Potential Energy of Two Interacting Charges

$$E = k (Q_1Q_2)/d$$

Physical Constants

Avogadro's Number \rightarrow N = 6.022×10^{23}

Planck's Constant \rightarrow h = 6.626×10^{-34} J-s

Speed of Light \rightarrow c = 3.00 × 10⁸ m/s

Rydberg's Constant \rightarrow R_H = 1.10 \times 10⁷ m⁻¹

Charge of an Electron \rightarrow e = 1.602 × 10⁻¹⁹ C

Temperature Conversions \rightarrow K = 273 + $^{\circ}$ C

STP \rightarrow 273 K and 1 atm

 $1 \text{ mL} = 1 \text{ cm}^3$

1.	[7.5 points] How many electrons, protons and neutrons does 43 Ca2+ have?							
	 (a) 20 protons, 23 neutrons and 18 electrons (b) 23 protons, 20 neutrons and 21 electrons (c) 20 protons, 23 neutrons and 20 electrons (d) 20 protons, 18 neutrons and 23 electrons (e) none of the above are correct 							
2.	[7.5 points] W	hat is the form	nula of chromiun	n (III) oxide?				
	(a) Cr ₃ O	(b) <i>C</i> rO ₃	(c) CrO	(d) Cr ₂ O ₃	(e) CrO ₂			
3.	[7.5 Points] Who between calcium		rical formula of	the ionic compour	d that forms			
	(a) CaS	(b) Ca ₂ S	(c) Ca ₂ S ₃	(d) CaSO ₄	(e) Ca ₃ (SO ₄) ₂			
4.	[7.5 points] What is the quantity of Fe_2O_3 that will be produced if 5.00 g of FeS_2 is reacted with 11.0 g of oxygen according to the following reaction:							
	4 FeS ₂ (s) + 11 $O_2(g) \rightarrow 2 \text{ Fe}_2O_3(s) + 8 \text{ S}O_2(g)$							
	(a) 3.33 g (b) 9.98 g (c) 6.65 g (d) 1.55 g (e) 20.96 g							
5.	. [7.5 Points] When 27.3 g of Fe powder is completely burned in air, an iron oxide is produced. The mass of the iron oxide should be:							
	(a) less than 27.3 g because mass is lost on burning (b) equal to 27.3 g because matter is conserved in a chemical reaction							

(c) greater than 27.3 g because oxygen has been added to the iron

mass of oxygen

(d) equal to 43.3 g which is equal to the initial mass of Fe plus the atomic

- **6.** [7.5 points] When a sample of ammonium nitrate dissolves in 100 g of water, the temperature changes from $25^{\circ}C$ to $15^{\circ}C$. For this process:
 - (a) ΔH is positive and the process is endothermic
 - (b) ΔH is positive and the process is exothermic
 - (c) ΔH is negative and the process is exothermic
 - (d) ΔH is negative and the process is endothermic
- 7. [7.5 points] Strontium has three isotopes with mass numbers 86, 87 and 88. Their relative abundances are 9.9%, 7.0% and 82.6% respectively. How do the number of electrons and the electron configurations compare for atoms of the three isotopes?
 - (a) Each has the same number of electrons and the same electron configuration
 - (b) Each has different numbers of electrons and the same electron configuration
 - (c) Each has different numbers of electrons and different electron configuration
 - (d) It is impossible to decide because electron configurations do not apply to isotopes
- 8. [7.5 Points] If 258 mL of a 0.500 M Pb(NO₃)₂ solution is mixed with 500 mL of a 0.312 M NaI solution, what is the identity and mass of the precipitate that is formed?
 - (a) Precipitate = PbI_2 , mass = 59.5 g
 - (b) Precipitate = $NaNO_3$, mass = 3.32 g
 - (c) Precipitate = PbI_2 , mass = 36.0 g
 - (d) Precipitate = PbI_2 , mass = 18.0 g
 - (e) Precipitate = NaNO₃, mass = 5.48 g
- 9. [7.5 Points] Which of the following metals will be oxidized to form cations if placed in a beaker of 1.0 M manganese (II) chloride solution?
 - (a) Fe
 - (b) Aq
 - (c) Mg
 - (d) Both (a) Fe and (b) Ag will be oxidized by a MnCl2 solution
 - (e) None of the above metals will be oxidized by a $MnCl_2$ solution

- 10. [7.5 Points] If 10.0 mL of 1.50 M NaOH solution is mixed with 25.0 mL of 0.750 M NaOH solution, what is the concentration of the resulting solution?
 - (a) 1.12 M
 - (b) 2.25 M
 - (c) 0.0338 M
 - (d) 1.25 M
 - (e) 0.964 M
- 11. [7.5 points] Which of the following photons has the highest energy?
 - (a) A photon with a wavelength of 2.50×10^{-6} m
 - (b) A photon with a frequency of 6.00×10^{14} s⁻¹
 - (c) A photon with a wavelength of 650 nm
 - (d) A photon in the infrared region of the spectrum
 - (e) A photon with energy of 9.94×10^{-19} J
- 12. [7.5 points] From the following enthalpies of reaction:

$$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(I)$$
 $\Delta H = -3120 \text{ kJ}$ $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H = -394 \text{ kJ}$

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$$
 $\Delta H = -572 \text{ kJ}$

Calculate ΔH for the following reaction.

$$2C(s) + 3H_2(g) \rightarrow C_2H_6(g)$$

- (a) -86 kJ
- (b) -3206 kJ
- (c) -172 kJ
- (d) 1517 kJ
- (e) None of the above

13.	. [7.5 points] Ozone (O_3) exothermically decomposes to give oxygen (O_2) according to the following reaction:							
		2O ₃ (g	$\rightarrow 3O_2(g)$	$\Delta H = -285$.4 kJ			
How	much	heat will be releas s	ed by the deco	omposition of	f 15.0 g of ozone?			
	(a)	44.6 kJ						
	(b)	89.2 kJ						
	(c)	285 kJ						
		66.9 kJ						
	(e)	155 kJ						
14.	[7.5	points] Which of th	ne following ph	notons has th	ne highest energy?			
	(a)	A photon with a w	vavelenath of	$2.50 imes10^{-6}$ m	1			
		A photon with a f						
		A photon with a w	• •					
	(d)	A photon in the ir	nfrared region	of the spec	trum			
	(e)	A photon with end	ergy of 9.94 $ imes$	10 ⁻¹⁹ J				
15.	15. [7.5 points] Which of the following ions has the greatest number of <u>unpaired electrons</u> ?							
	(a) (Cr ³⁺ (b) Co	o ²⁺ (c)	Zn ²⁺	(d) Fe³⁺	(e) Ca ²⁺		
16.	[7.5	Points] What is the	e wavelength o	of a photon w	vith energy of 8.66	× 10 ⁻¹⁹ ?		
	(a)	230 nm						
	(b)	$1.31 \times 10^{15} \mathrm{m}$						
	(c) 315 nm							
	(d) 866 nm							
	(e)	None of the above	:					
17	17 E .		. (.11		- (in an a ain a			
17.		points] Arrange the ronegativity, F, Cl, .	•	oms in order	of increasing			
(a) L	east E	lectronegative	F < Ca < As <	P < 5 < Cl	Most Electronegat	tive		
	(b) Least Electronegative F < Cl < Ca < As < P < 5 Most Electronegative							
	(c) Least Electronegative Ca < As < P < S < F < Cl Most Electronegative							
	d) Least Electronegative Ca < As < P < S < Cl < F Most Electronegative							
	(e) Least Electronegative F < Cl < S < P < As < Ca Most Electronegative							

	affinity (EA):	Br, As, Se, Kr.					
(a) Least negative EA(b) Least negative EA(c) Least negative EA(d) Least negative EA(e) Least negative EA		Br < Se < As < Kr Most negative Kr < Br < Se < As Most negative As < Se < Br Kr Most negative Kr < As < Se < Br Most negative Most negative Br < Kr < As < Se < Most negative Most negat		tive EA tive EA tive EA			
19.	[7.5 points] Pr	redict which m	olecule will	have the sho	rtest C-O bond?	•	
(b)	CO ₃ ²⁻ CO ₂ H ₂ CO CO CH ₃ OH						
20.	[7.5 points]	What is the ox	idation sta	te of sulfur i	n the sulfate io	n, 50 ₄ ²⁻ ?	
(a)	0	(b) +2	(c) -2	2	(d) +8	(e) +6	
21. [7.5 points] What is the formal charge on sulfur in the sulfate ion, 50_4^{2-} ?							
(a)	0	(b) +2	(c) -2		(d) +8	(e) +6	
22. [7.5 points] Which of the following ionic compounds would you expect to have the largest lattice energy?							
(a)	KCl	(b) RbBr	(c) Cs	I	(d) SrSe	(e) CaO	

18. [7.5 points] Arrange the following atoms in order of increasing electron

23. [7.5 points] Estimate ΔH for the reaction between formaldehyde and chlorine to form phosgene and hydrogen :							
H ₂ CO(g) +	$Cl_2(g) \rightarrow Cl_2CO(g) +$	H ₂ (g)					
Using the following bond enthalpie	es as necessary:						
C-O 358 kJ/mol C=O 799 kJ/mol C-Cl 328 kJ/mol	С-Н	436 kJ/mol 413 kJ/mol 242 kJ/mol					
(a) -2160 kJ (b) -109 kJ (c) +109 kJ (d) -24 kJ (e) none of the above							
24. [7.5 Points] Which of the following molecules does not violate the octet rule?							
(a) NO ₂ (b) GeF ₄	(c) TeF ₄	(d) BCl ₃	(e) XeF ₄				
25 . [7.5 points] Based on the Lewis dot structures, predict the ordering of N-O bond lengths in the following molecules: NO^+ , NO_2^- and NO_3^- .							
(a) Shortest N-O bonds(b) Shortest N-O bonds(c) Shortest N-O bonds(d) Shortest N-O bonds(e) Shortest N-O bonds	$NO_3^- < NO_2^- < NO^+$ $NO_2^- < NO_3^- < NO^+$ $NO^+ < NO_2^- < NO_3^-$ $NO^+ < NO_3^- < NO_2^-$ $NO^+ < NO_3^- = NO_2^-$	Longest N-O bo	onds onds onds				
26. [7.5 points] Using VSEPR th	heory, predict the mol	ecular geometry	of SF ₄ .				
(a) tetrahedral (d) trigonal bipyramidal	(b) see-saw (e) square planar	(c) T-shaped					
27. [7.5 points] Using VSEPR th		cular geometry o	f NF₃.				
(a) tetrahedral	(b) trigonal planar	(c) T-shaped					
(d) see-saw	(e) trigonal pyramidal						

28.	3. [7.5 points] What is the hybrid orbital set used by the carbon atom in the molecule H ₂ CO?							
(a) s	р ((b) sp²	(c) sp ³	(d) sp³d	(e) sp^3d^2			
29.	9. [7.5 points] Which of the following molecules is not linear.							
	(a) KrF ₂ (b) HCN (c) SO ₂ (d) CO ₂ (e) Both (a) KrF ₂ and (c) SO ₂ are non-linear							
30.	30. [7.5 points] Which of the following molecules are polar?							
(a) C	H ₄	(b) SF ₆	(c) BF ₃	(d) SO ₂	(e) CO ₂			

32. [7.5 points] How many σ and π bonds are there in C_2H_2 ?

- (a) 3 σ bonds and 1 π bond
- (b) 2 σ bonds and 3 π bonds
- (c) 3 σ bonds and 3 π bonds
- (d) 5 σ bonds and 0 π bonds
- (e) 3 σ bonds and 2 π bonds

33. [7.5 Points] Use molecular orbital theory to predict which molecule would have the shortest oxygen-oxygen bond distance?

- (a) O₂-
- (b) O₂
- (c) O₂⁺
- (d) O_2^{2-}