Formulas and Constants ### Thermochemistry $$\Delta H^{\circ}_{rxn} = \Sigma n \Delta H^{\circ}(products) - \Sigma n \Delta H^{\circ}(reactants)$$ $\Delta H^{\circ}_{rxn} = \Sigma n \Delta H^{\circ}$ (enthalpies of bonds broken) - $\Sigma n \Delta H^{\circ}$ (enthalpies of bonds formed) $$q = mC_s(T_F - T_I)$$ # Properties of Electromagnetic Radiation $$E = hc/\lambda = hv$$ $$\lambda v = c$$ # DeBroglie Relationship $$\lambda = h/(mv)$$ # Potential Energy of Two Interacting Charges $$E = k (Q_1Q_2)/d$$ ### Physical Constants Avogadro's Number \rightarrow N = 6.022×10^{23} Planck's Constant \rightarrow h = 6.626×10^{-34} J-s Speed of Light \rightarrow c = 3.00 × 10⁸ m/s Rydberg's Constant \rightarrow R_H = 1.10 \times 10⁷ m⁻¹ Charge of an Electron \rightarrow e = 1.602 × 10⁻¹⁹ C Temperature Conversions \rightarrow K = 273 + $^{\circ}$ C STP \rightarrow 273 K and 1 atm $1 \text{ mL} = 1 \text{ cm}^3$ | 1. | [7.5 points] How many electrons, protons and neutrons does 43 Ca2+ have? | | | | | | | | |----|---|------------------------------|------------------------------------|------------------------------------|---|--|--|--| | | (a) 20 protons, 23 neutrons and 18 electrons (b) 23 protons, 20 neutrons and 21 electrons (c) 20 protons, 23 neutrons and 20 electrons (d) 20 protons, 18 neutrons and 23 electrons (e) none of the above are correct | | | | | | | | | 2. | [7.5 points] W | hat is the form | nula of chromiun | n (III) oxide? | | | | | | | (a) Cr ₃ O | (b) <i>C</i> rO ₃ | (c) CrO | (d) Cr ₂ O ₃ | (e) CrO ₂ | | | | | 3. | [7.5 Points] Who between calcium | | rical formula of | the ionic compour | d that forms | | | | | | (a) CaS | (b) Ca ₂ S | (c) Ca ₂ S ₃ | (d) CaSO ₄ | (e) Ca ₃ (SO ₄) ₂ | | | | | 4. | [7.5 points] What is the quantity of Fe_2O_3 that will be produced if 5.00 g of FeS_2 is reacted with 11.0 g of oxygen according to the following reaction: | | | | | | | | | | 4 FeS ₂ (s) + 11 $O_2(g) \rightarrow 2 \text{ Fe}_2O_3(s) + 8 \text{ S}O_2(g)$ | | | | | | | | | | (a) 3.33 g
(b) 9.98 g
(c) 6.65 g
(d) 1.55 g
(e) 20.96 g | | | | | | | | | 5. | . [7.5 Points] When 27.3 g of Fe powder is completely burned in air, an iron oxide is produced. The mass of the iron oxide should be: | | | | | | | | | | (a) less than 27.3 g because mass is lost on burning (b) equal to 27.3 g because matter is conserved in a chemical reaction | | | | | | | | (c) greater than 27.3 g because oxygen has been added to the iron mass of oxygen (d) equal to 43.3 g which is equal to the initial mass of Fe plus the atomic - **6.** [7.5 points] When a sample of ammonium nitrate dissolves in 100 g of water, the temperature changes from $25^{\circ}C$ to $15^{\circ}C$. For this process: - (a) ΔH is positive and the process is endothermic - (b) ΔH is positive and the process is exothermic - (c) ΔH is negative and the process is exothermic - (d) ΔH is negative and the process is endothermic - 7. [7.5 points] Strontium has three isotopes with mass numbers 86, 87 and 88. Their relative abundances are 9.9%, 7.0% and 82.6% respectively. How do the number of electrons and the electron configurations compare for atoms of the three isotopes? - (a) Each has the same number of electrons and the same electron configuration - (b) Each has different numbers of electrons and the same electron configuration - (c) Each has different numbers of electrons and different electron configuration - (d) It is impossible to decide because electron configurations do not apply to isotopes - 8. [7.5 Points] If 258 mL of a 0.500 M Pb(NO₃)₂ solution is mixed with 500 mL of a 0.312 M NaI solution, what is the identity and mass of the precipitate that is formed? - (a) Precipitate = PbI_2 , mass = 59.5 g - (b) Precipitate = $NaNO_3$, mass = 3.32 g - (c) Precipitate = PbI_2 , mass = 36.0 g - (d) Precipitate = PbI_2 , mass = 18.0 g - (e) Precipitate = NaNO₃, mass = 5.48 g - 9. [7.5 Points] Which of the following metals will be oxidized to form cations if placed in a beaker of 1.0 M manganese (II) chloride solution? - (a) Fe - (b) Aq - (c) Mg - (d) Both (a) Fe and (b) Ag will be oxidized by a MnCl2 solution - (e) None of the above metals will be oxidized by a $MnCl_2$ solution - 10. [7.5 Points] If 10.0 mL of 1.50 M NaOH solution is mixed with 25.0 mL of 0.750 M NaOH solution, what is the concentration of the resulting solution? - (a) 1.12 M - (b) 2.25 M - (c) 0.0338 M - (d) 1.25 M - (e) 0.964 M - 11. [7.5 points] Which of the following photons has the highest energy? - (a) A photon with a wavelength of 2.50×10^{-6} m - (b) A photon with a frequency of 6.00×10^{14} s⁻¹ - (c) A photon with a wavelength of 650 nm - (d) A photon in the infrared region of the spectrum - (e) A photon with energy of 9.94×10^{-19} J - 12. [7.5 points] From the following enthalpies of reaction: $$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(I)$$ $\Delta H = -3120 \text{ kJ}$ $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H = -394 \text{ kJ}$ $$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$$ $\Delta H = -572 \text{ kJ}$ Calculate ΔH for the following reaction. $$2C(s) + 3H_2(g) \rightarrow C_2H_6(g)$$ - (a) -86 kJ - (b) -3206 kJ - (c) -172 kJ - (d) 1517 kJ - (e) None of the above | 13. | . [7.5 points] Ozone (O_3) exothermically decomposes to give oxygen (O_2) according to the following reaction: | | | | | | | | |-------|--|--|-----------------------|----------------------|--------------------------|-----------------------|--|--| | | | 2O ₃ (g | $\rightarrow 3O_2(g)$ | $\Delta H = -285$ | .4 kJ | | | | | How | much | heat will be releas s | ed by the deco | omposition of | f 15.0 g of ozone? | | | | | | (a) | 44.6 kJ | | | | | | | | | (b) | 89.2 kJ | | | | | | | | | (c) | 285 kJ | | | | | | | | | | 66.9 kJ | | | | | | | | | (e) | 155 kJ | | | | | | | | 14. | [7.5 | points] Which of th | ne following ph | notons has th | ne highest energy? | | | | | | (a) | A photon with a w | vavelenath of | $2.50 imes10^{-6}$ m | 1 | | | | | | | A photon with a f | | | | | | | | | | A photon with a w | • • | | | | | | | | (d) | A photon in the ir | nfrared region | of the spec | trum | | | | | | (e) | A photon with end | ergy of 9.94 $ imes$ | 10 ⁻¹⁹ J | | | | | | 15. | 15. [7.5 points] Which of the following ions has the greatest number of <u>unpaired electrons</u> ? | | | | | | | | | | (a) (| Cr ³⁺ (b) Co | o ²⁺ (c) | Zn ²⁺ | (d) Fe³⁺ | (e) Ca ²⁺ | | | | 16. | [7.5 | Points] What is the | e wavelength o | of a photon w | vith energy of 8.66 | × 10 ⁻¹⁹ ? | | | | | (a) | 230 nm | | | | | | | | | (b) | $1.31 \times 10^{15} \mathrm{m}$ | | | | | | | | | (c) 315 nm | | | | | | | | | | (d) 866 nm | | | | | | | | | | (e) | None of the above | : | | | | | | | 17 | 17 E . | | . (.11 | | - (in an a ain a | | | | | 17. | | points] Arrange the ronegativity, F, Cl, . | • | oms in order | of increasing | | | | | (a) L | east E | lectronegative | F < Ca < As < | P < 5 < Cl | Most Electronegat | tive | | | | | (b) Least Electronegative F < Cl < Ca < As < P < 5 Most Electronegative | | | | | | | | | | (c) Least Electronegative Ca < As < P < S < F < Cl Most Electronegative | | | | | | | | | | d) Least Electronegative Ca < As < P < S < Cl < F Most Electronegative | | | | | | | | | | (e) Least Electronegative F < Cl < S < P < As < Ca Most Electronegative | | | | | | | | | | affinity (EA): | Br, As, Se, Kr. | | | | | | |---|---|--|--------------|-------------------------------|------------------|------------------------------------|--| | (a) Least negative EA(b) Least negative EA(c) Least negative EA(d) Least negative EA(e) Least negative EA | | Br < Se < As < Kr Most negative Kr < Br < Se < As Most negative As < Se < Br Kr Most negative Kr < As < Se < Br Most negative Most negative Br < Kr < As < Se < Most negative negat | | tive EA
tive EA
tive EA | | | | | 19. | [7.5 points] Pr | redict which m | olecule will | have the sho | rtest C-O bond? | • | | | (b) | CO ₃ ²⁻
CO ₂
H ₂ CO
CO
CH ₃ OH | | | | | | | | 20. | [7.5 points] | What is the ox | idation sta | te of sulfur i | n the sulfate io | n, 50 ₄ ²⁻ ? | | | (a) | 0 | (b) +2 | (c) -2 | 2 | (d) +8 | (e) +6 | | | 21. [7.5 points] What is the formal charge on sulfur in the sulfate ion, 50_4^{2-} ? | | | | | | | | | (a) | 0 | (b) +2 | (c) -2 | | (d) +8 | (e) +6 | | | 22. [7.5 points] Which of the following ionic compounds would you expect to have the largest lattice energy? | | | | | | | | | (a) | KCl | (b) RbBr | (c) Cs | I | (d) SrSe | (e) CaO | 18. [7.5 points] Arrange the following atoms in order of increasing electron | 23. [7.5 points] Estimate ΔH for the reaction between formaldehyde and chlorine to form phosgene and hydrogen : | | | | | | | | |--|--|--|----------------------|--|--|--|--| | H ₂ CO(g) + | $Cl_2(g) \rightarrow Cl_2CO(g) +$ | H ₂ (g) | | | | | | | Using the following bond enthalpie | es as necessary: | | | | | | | | C-O 358 kJ/mol
C=O 799 kJ/mol
C-Cl 328 kJ/mol | С-Н | 436 kJ/mol
413 kJ/mol
242 kJ/mol | | | | | | | (a) -2160 kJ
(b) -109 kJ
(c) +109 kJ
(d) -24 kJ
(e) none of the above | | | | | | | | | 24. [7.5 Points] Which of the following molecules does not violate the octet rule? | | | | | | | | | (a) NO ₂ (b) GeF ₄ | (c) TeF ₄ | (d) BCl ₃ | (e) XeF ₄ | | | | | | 25 . [7.5 points] Based on the Lewis dot structures, predict the ordering of N-O bond lengths in the following molecules: NO^+ , NO_2^- and NO_3^- . | | | | | | | | | (a) Shortest N-O bonds(b) Shortest N-O bonds(c) Shortest N-O bonds(d) Shortest N-O bonds(e) Shortest N-O bonds | $NO_3^- < NO_2^- < NO^+$
$NO_2^- < NO_3^- < NO^+$
$NO^+ < NO_2^- < NO_3^-$
$NO^+ < NO_3^- < NO_2^-$
$NO^+ < NO_3^- = NO_2^-$ | Longest N-O bo | onds
onds
onds | | | | | | 26. [7.5 points] Using VSEPR th | heory, predict the mol | ecular geometry | of SF ₄ . | | | | | | (a) tetrahedral (d) trigonal bipyramidal | (b) see-saw
(e) square planar | (c) T-shaped | | | | | | | 27. [7.5 points] Using VSEPR th | | cular geometry o | f NF₃. | | | | | | (a) tetrahedral | (b) trigonal planar | (c) T-shaped | | | | | | | (d) see-saw | (e) trigonal pyramidal | | | | | | | | 28. | 3. [7.5 points] What is the hybrid orbital set used by the carbon atom in the molecule H ₂ CO? | | | | | | | | |-------|---|---------------------|---------------------|---------------------|---------------------|--|--|--| | (a) s | р (| (b) sp² | (c) sp ³ | (d) sp³d | (e) sp^3d^2 | | | | | 29. | 9. [7.5 points] Which of the following molecules is not linear. | | | | | | | | | | (a) KrF ₂ (b) HCN (c) SO ₂ (d) CO ₂ (e) Both (a) KrF ₂ and (c) SO ₂ are non-linear | | | | | | | | | 30. | 30. [7.5 points] Which of the following molecules are polar? | | | | | | | | | (a) C | H ₄ | (b) SF ₆ | (c) BF ₃ | (d) SO ₂ | (e) CO ₂ | | | | 32. [7.5 points] How many σ and π bonds are there in C_2H_2 ? - (a) 3 σ bonds and 1 π bond - (b) 2 σ bonds and 3 π bonds - (c) 3 σ bonds and 3 π bonds - (d) 5 σ bonds and 0 π bonds - (e) 3 σ bonds and 2 π bonds 33. [7.5 Points] Use molecular orbital theory to predict which molecule would have the shortest oxygen-oxygen bond distance? - (a) O₂- - (b) O₂ - (c) O₂⁺ - (d) O_2^{2-}