CHEMISTRY 1220 CHAPTER 16 PRACTICE EXAM

1. The pH of a 0.10 M solution of NH_{3} containing $0.10 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ is 9.20 . What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?
a) $\left.\left.1.6 \times 10^{-5} \mathrm{~b}\right) 1.0 \times 10^{-1} \mathrm{c}\right) 6.3 \times 10^{-10}$
d) 1.7×10^{-10} e) 2.0×10^{-9}
2. Calculate the pH of an aqueous solution which is $0.0020 \mathrm{M} \mathrm{HClO}_{4}$.
a) 1.30 b) 1.70 c) 2.30 d$) 2.70$ e) 2.00
3. According to the Bronsted-Lowry Concept of acids and bases which of the following statements, a-d,
is FALSE?
a) A base is a species that accepts a proton.
b) Acid-base reactions are restricted to aqueous solutions.
c) Some species can act as either acids or bases, depending on what the other reactant is.
d) NH_{3} is a Bronsted base.
e) All of the above, a-d, are part of this theory.
4. Given that K_{w} for water is $2.40 \times 10^{-14}\left(\mathrm{M}^{2}\right)$ at $37^{\circ} \mathrm{C}$, compute the pH of a neutral aqueous solution at $37^{\circ} \mathrm{C}$ (normal human body temperature). Answer the following TWO questions. What is the pH of a neutral solution at $37^{\circ} \mathrm{C}$? AND If a solution has $\mathrm{pH}=7.00$ is it acidic, basic, or neutral at $37^{\circ} \mathrm{C}$?
a) 6.82 , acidic b) 6.82 , basic c) 7.19 , acidic d) 7.19 , basic e) 7.00 , neutral
5. The K_{a} values for HS^{-}and $\mathrm{HPO}_{4}{ }^{2-}$ are 1.2×10^{-13} and 4.8×10^{-13} respectively. Therefore it follows the HS^{-}is a acid than $\mathrm{HPO}_{4}{ }^{2-}$ and $\mathrm{S}_{2}{ }^{-}$is a base than $\mathrm{PO}_{4}{ }^{3-}$.
a) stronger, stronger b) stronger, weaker c) weaker, stronger d) weaker, weaker
6. What is the ionization constant of an acid if the hydronium ion concentration of a 0.500 M solution is $1.70 \times 10^{-4} \mathrm{M}$?
a) $\left.\left.\left.\left.3.62 \times 10^{-7} \mathrm{~b}\right) 2.89 \times 10^{-8} \mathrm{c}\right) 5.80 \times 10^{-8} \mathrm{~d}\right) 1.16 \times 10^{-7} \mathrm{e}\right) 1.70 \times 10^{-3}$
7. Consider the following salts. Which one(s) when dissolved in water will produce an acidic solution?
1) $\left.\left.\mathrm{NH}_{4} \mathrm{Cl} 2\right) \mathrm{KHSO}_{4} 3\right) \mathrm{NaCN}$
a) only 1 b) only 2 c) only 3 d) 1 and 2 e) 2 and 3
8. A 0.010 M solution of HNO_{2} is 19% ionized. What is the Ka_{a} ?
a) $\left.\left.\left.\left.4.5 \times 10^{-4} \mathrm{~b}\right) 3.9 \times 10^{-4} \mathrm{c}\right) 3.6 \times 10^{-4} \mathrm{~d}\right) 5.0 \times 10^{-4} \mathrm{e}\right) 5.4 \times 10^{-4}$
9. What is the pH of a $0.20 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ solution $\left(\mathrm{K}_{\mathrm{b}}: \mathrm{NH}_{3}=1.8 \times 10^{-5}\right)$?
a) 2.72 b) 3.11 c$) 4.98$ d) 5.12 e) 7.61
10. Ascorbic acid, $\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$, is a diprotic acid. The K_{1} and K_{2} values are 7.9×10^{-5} and 1.6×10^{-12} respectively. What is the $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}{ }^{2-}$ ion concentration in a 0.10 M solution of ascorbic acid?
a) $1.6 \times 10^{-6} \mathrm{~b}$) $1.6 \times 10^{-12} \mathrm{c}$) $7.9 \times 10^{-12} \mathrm{~d}$) $2.8 \times 10^{-3} \mathrm{e}$) 5.6×10^{-3}
11. What is the pH of a solution of 0.31 M acid and 0.65 M of its conjugate base if the ionization constant, K_{a}, is 5.22×10^{-7} ?
a) 6.60 b) 6.81 c$) 7.00 \mathrm{~d}) 7.21$ e) 7.42
12. Rubidium hydroxide is a strong base. Compute $\left[\mathrm{Rb}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$for a solution that is prepared by dissolving 2.0 g of RbOH in enough water to make 200.0 mL of solution. (atomic weights: $\mathrm{Rb}=85.47, \mathrm{O}=16.00, \mathrm{H}=1.008$)
a) $1.9 \times 10^{-2}, 1.9 \times 10^{-2}$
b) $1.9 \times 10^{-2}, 5.3 \times 10^{-13}$
c) $5.3 \times 10^{-13}, 1.9 \times 10^{-2}$
d) $9.8 \times 10^{-2}, 9.8 \times 10^{-2}$
e) $9.8 \times 10^{-1}, 9.8 \times 10^{-1}$
13. You are given two solutions: $0.50 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ and $0.50 \mathrm{M} \mathrm{Ca}(\mathrm{OH}) 2(\mathrm{aq})$. What is the [H_{+}] in the HCl solution? What is the [$\left.\mathrm{OH}_{-}\right]$in the $\mathrm{Ca}(\mathrm{OH})_{2}$ solution? (The solutions are NOT mixed together).
$\left[\mathrm{H}^{+}\right][\mathrm{OH}-]$
a) $\left[\mathrm{H}_{+}\right]=0.50 \mathrm{M},\left[\mathrm{OH}_{-}\right]=0.50 \mathrm{M}$
b) $\left[\mathrm{H}_{+}\right]=0.25 \mathrm{M},\left[\mathrm{OH}_{-}\right]=1.0 \mathrm{M}$
c) $\left[\mathrm{H}_{+}\right]=0.50 \mathrm{M},[\mathrm{OH}-]=0.25 \mathrm{M}$
d) $\left[\mathrm{H}_{+}\right]=0.25 \mathrm{M},\left[\mathrm{OH}_{-}\right]=0.25 \mathrm{M}$
e) $\left[\mathrm{H}_{+}\right]=0.50 \mathrm{M},[\mathrm{OH}-]=1.0 \mathrm{M}$
14. How many grams of phosphoric acid are there in 175 mL of a 3.5 M solution of phosphoric acid (MW $98.00 \mathrm{~g} / \mathrm{mol}$)?
a) 0.61 g
b) 60 g
c) 21 g
d) 4.9 g
e) 610 g
15. A solution is prepared by dissolving 516.5 mg of oxalic acid $\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}, 90.00 \mathrm{~g} / \mathrm{mol}\right)$ to make 100.0 mL of solution. A 10.00 mL portion is then diluted to 250.0 mL . What is the molarity of the final solution?
a) $2.295 \times 10^{-3} \mathrm{M}$
b) $6.341 \times 10^{-2} \mathrm{M}$
c) $3.172 \times 10^{-3} \mathrm{M}$
d) $4.685 \times 10^{-2} \mathrm{M}$
e) $1.889 \times 10^{-3} \mathrm{M}$
16. What is the conjugate base of methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$?
a) $\mathrm{CH}_{3} \mathrm{NH}^{+}$
b) $\mathrm{CH}_{3} \mathrm{NH}^{-}$
c) $\mathrm{CH}_{3} \mathrm{NH}_{2}{ }^{+}$
d) $\mathrm{CH}_{3} \mathrm{NH}_{2}{ }^{-}$
e) $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$
17. What is the conjugate acid of methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$?
a) $\mathrm{CH}_{3} \mathrm{NH}^{+}$
b) $\mathrm{CH}_{3} \mathrm{NH}^{-}$
c) $\mathrm{CH}_{3} \mathrm{NH}_{2}{ }^{+}$
d) $\mathrm{CH}_{3} \mathrm{NH}_{2}^{-}$
e) $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$
18. The K_{a} values for HCNO and HNO_{2} are 2.2×10^{-4} and 4.5×10^{-4} respectively. Therefore it follows the HCNO is a __ acid than HNO_{2} and CNO^{-}is a ___ base than $\mathrm{NO}_{2}{ }^{-}$.
a) stronger, stronger
b) stronger, weaker
c) weaker, stronger
d) weaker, weaker
19. What change will be observed for the following reaction if a few drops of NaOH are added?

$$
\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

a) a decrease in the fraction of acid dissociated
b) an increase in the fraction of acid dissociated
c) no change in the fraction of acid dissociated
20. Given K_{a} values of 1.0×10^{-10} and 6.8×10^{-8} for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$respectively, calculate the equilibrium constant for the following reaction.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}+\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}
$$

a) 6.8×10^{2}
b) 0.15
c) 1.5×10^{-3}
d) 6.8×10^{-2}
e) 6.8×10^{-8}
21. The value of K_{a} in water at $25^{\circ} \mathrm{C}$ for benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right)$ is $6.46 \times 10^{-5} \mathrm{M}$. Calculate the pH of an aqueous solution with a total concentration of benzoic acid equal to 0.025 M .
a) 1.29
b) 2.09
c) 2.90
d) 3.10
e) 3.90
22. The value of K_{a} in water at $25^{\circ} \mathrm{C}$ for chloroacetic acid is $1.35 \times 10^{-3} \mathrm{M}$. Calculate the pH of an aqueous solution with an initial concentration of chloroacetic acid equal to 0.10 M .
a) 1.35
b) 1.96
c) 2.14
d) 3.65
e) 3.35
23. Consider the following salts. Which one(s) when dissolved in water will produce an acidic solution?

1) $\mathrm{NH}_{4} \mathrm{Cl}$
2) KHSO_{4}
3) NaCN
a) only 1
b) only 2
c) only 3
d) 1 and 2
e) 2 and 3
24. A 1.50 g sample of Vitamin C is dissolved in 100.0 mL of water and titrated with 0.250 M NaOH to the methyl orange equivalence point. The volume of the base used is 34.1 mL . What is the molecular weight of Vitamin C assuming one dissociable proton per molecule?
a) 176 b) 164 c) 152 d) 146 e) 139
25. A 25.00 mL sample of 0.100 M HCl is titrated with 0.100 M NaOH . What is the pH of the solution at the points where 24.9 and 25.1 mL of NaOH have been added.
a) $3.00,11.00$
b) $3.30,10.70$
c) $3.30,10.30$
d) $3.70,10.30$
e) $3.70,10.70$
26. What is the pH of a solution of 0.65 M acid and 0.51 M of its conjugate base if the pK_{a} is 5.30 ?
a) 5.19
b) 5.41
c) 5.62
d) 5.85
e) 6.05
27. Hydrosulfuric acid $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ has $\mathrm{K}_{1}=1.1 \times 10^{-7}$ and $\mathrm{K}_{2}=1.0 \times 10^{-13}$. What is the HS ion concentration of a 0.10 M solution of $\mathrm{H}_{2} \mathrm{~S}$?
a) 1.0×10^{-4}
b) 1.0×10^{-5}
c) 3.3×10^{-4}
d) 3.3×10^{-5}
e) 1.1×10^{-7}
28. A 0.0184 M solution of HCNO is 12.8% ionized. What is the K_{a} ?
a) 1.1×10^{-3}
b) 1.5×10^{-3}
c) 1.9×10^{-3}
d) 3.5×10^{-4} e) 2.9×10^{-4}
29. Given the following K_{a} values, determine which species is the strongest base.
HF 6.8×10^{-4}
$\mathrm{HNO}_{2} 4.5 \times 10^{-4}$
HCNO 2.2×10^{-4}
a) F^{-}
b) $\mathrm{NO}_{2}{ }^{-}$
c) CNO^{-}
d) HF
e) HCNO
30. A 25.00 mL sample of $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ is titrated with 0.100 M NaOH . What is the pH of the solution at the points where 25.0 and 25.5 mL of NaOH have been added? $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$
a) $8.72,11.00$
b) $8.72,9.85$
c) $7.00,10.00$
d) $7.00,9.85$
e) $7.00,8.00$
