CHEMISTRY 1220 SPRING 2013 CHECKLIST: TTH CLASS

LECTURE #1

Syllabus overview, course expectations, Mastering Chemistry registration, Polleverywhere registration, www.drfus.com

Before I	ecture #2 you must:
	Register for Mastering Chemistry (Course ID: TTHCHEM1220SP13)
	Register for Polleverywhere
	Videos to Watch or Textbook Sections to Read Before Lecture #2:
	Section 13.1 Properties of Solutions (3:55)
	Section 13.1 The Solution Process (8:15)
	Section 13.2 Saturated Solutions and Solubility (6:56)
	Section 13.3 Factors Affecting Solubility (7:21)
	Section 13.3 Miscibility (5:29)
	Section 13.3 Pressure Effects on Gas Solubility (4:18)
	Section 13.3 Pressure Effects on Gas Solubility Example Problem
_	(3:31)
	Section 13.4 Expressing Solution Concentration (6:47)
	Section 13.4 Solution Concentration Example Problem (5:31)
	ng Chemistry Pre-Lecture #2 Assignment (due 6:30 pm Thurs., Jan. 10th):
	Interactive Activity – Energetics of Solution Formation
	Interactive Activity – Henry's Law
	Solubility
FCTLIRE #2·1	THURSDAY, JANUARY 10 th
	where Lecture Questions
	Dissolution of NaCl in Water (Go Figure 13.4)
	Energetics of Solution Formation (GIST 13.4)
	Henry's Law (13.38)
	Solubility of Gases and Intermolecular Forces (13.33 – Copy)
	Units of Concentration (13.49)
	Units of Concentration (13.53)
	Videos to Watch or Textbook Sections to Read Before Lecture #3:
	Section 13.5 Colligative Properties (7:50)
	Section 13.5 Colligative Properties Example Problem #1 (4:49)
	Section 13.5 Colligative Properties Example Problem #2 (3:29)
	Section 14.1 Factors That Affect Reaction Rates (3:04)
	DODGEDIE A 11A 1 MOCOLO 111MC1111COC 1 (CMCHOHOH 1 (MCCO OIO 1)
	Section 14.2 Reaction Rates (4:52) Section 14.2 Reaction Rates Example Problem (10:15)

Mastering Chemistry Pre-Lecture #3 Assignment (due 8:00 am Tues., Jan. 15 th)
☐ Boiling Point Elevation and Freezing Point Depression for Solutions in
Water
☐ Animation – Osmosis and Osmotic Pressure
☐ Molar Mass from Colligative Properties
☐ Reaction Rates
MASTERING CHEMISTRY GRADED HOMEWORK ASSIGNMENT #1
DUE SUNDAY, JANUARY 13 th at 11:59 PM
LECTURE #3: TUESDAY, JANUARY 15 th
Polleverywhere Lecture Questions
☐ Vapor Pressure Lowering (13.68)
☐ Freezing Point Depression (13.75)
☐ Molar Mass from Osmotic Pressure (13.82)
☐ Factors that Affect Reaction Rates (GIST 14.1)
☐ Reaction Rates and Stoichiometry (14.25)
Lecture Videos to Watch or Textbook Sections to Read Before Lecture #4:
☐ Section 14.3 Concentration and the Rate Law (5:28)
☐ Section 14.3 Concentration and the Rate Law Example Problem #1
(7:50)
☐ Section 14.3 Concentration and the Rate Law Example Problem #2
(7:50)
☐ Section 14.4 1st Order Integrated Rate Law (8:18)
\square Section 14.4 Half Life for 1 st order Reactions (2:48)
☐ Section 14.4 1st Order Half Life Example Problem (4:19)
\square Section 14.4 2 nd Order Integrated Rate Law Expression (3:21)
Mastering Chemistry Pre-Lecture #4 Assignment (due 8:00 am Thurs., Jan. 17th)
☐ Interactive Activity – The Rate Law
☐ Interactive Activity – The Kinetics of a Second Order Reaction
LECTURE #4: THURSDAY, JANUARY 17 th
Polleverywhere Lecture Questions
\square Rate Laws (14.35)
☐ Using Spectroscopic Methods to Measure Rates (14.107)
☐ Change in Concentration with Time (14.45)
☐ Determining Rate Laws with Experimental Data (14.47)
☐ Integrated Rate Law Expressions (14.51)
☐ Half Life (14.46)
Lecture Videos to Watch or Textbook Sections to Read Before Lecture #5:
☐ Section 14.5 Temperature and Rate (2:13)
☐ Section 14.5 The Collision Model (4:37)
☐ Section 14.5 The Orientation Factor (4:27)
☐ Section 14.5 Transition State Theory (9:55)
☐ Section 14.5 The Arrhenius Equation (5:53)

□ Section 14.5 The Arrhenius Equation Example Problem (5:01) □ Section 14.6 Reaction Mechanisms (2:53) □ Section 14.6 Proposing a Reaction Mechanism (5:48) □ Section 14.6 Proposing a Mechanism Example Problem #1 (2:32) □ Section 14.6 Proposing a Mechanism Example Problem #2A (5:41) □ Section 14.6 Proposing a Mechanism Example Problem #2B (6:57) □ Section 14.7 Catalysis (2:41) Mastering Chemistry Pre-Lecture #5 Assignment (due 8:00 am Tues., Jan. 22nd): □ Reaction Rates and Temperature □ Theoretical Models for Chemical Kinetics and Reaction Profiles □ Mechanisms and Molecularity
MASTERING CHEMISTRY GRADED HOMEWORK ASSIGNMENT #2
DUE SUNDAY, JANUARY 20 th at 11:59 PM
LECTURE #5: TUESDAY, JANUARY 22 nd
Polleverywhere Lecture Questions
☐ How Temperature Influences Rate (14.56)
☐ Factors Influencing Rate (14.59 – Copy)
☐ Determining Activation Energy (14.67)
☐ Proposing a Reaction Mechanism (14.77)
Proposing a Reaction Mechanism (14.78)
☐ Catalysis (14.95)
Lecture Videos to Watch or Textbook Sections to Read Before Lecture #6:
☐ Section 15.1 Chemical Equilibrium (3:08)
☐ Section 15.2 The Equilibrium Constant (5:44)
☐ Section 15.2 Equilibrium Expressions Involving Gases (7:49)
☐ Section 15.3 Magnitude of Equilibrium Constants (5:50)☐ Section 15.3 Combining Equilibrium Constants (6:46)
☐ Section 15.3 Combining Equilibrium Constants (6.46)
Mastering Chemistry Pre-Lecture #6 Assignment (due 8:00 am Thurs., Jan. 24th):
☐ Visual Representation of Equilibrium
☐ Linking Equilibrium and Kinetics
LECTURE #C. THURSDAY, JANUARY 24 th
LECTURE #6: THURSDAY, JANUARY 24 th Polleverywhere Lecture Questions
□ The Concept of Equilibrium (15.13)
☐ Equilibrium Constants (15.13)
☐ Determining Equilibrium Constants from Experimental Data (15.26)
☐ Combining Equilibrium Constants (15.27)
☐ Heterogeneous Reactions (15.28)
Lecture Videos to Watch or Textbook Sections to Read Before Lecture #7:
☐ Section 15.6 The Reaction Quotient Q (6:44)

	Section 15.6 Calculating Equilibrium Concentration Example Problem
	#1 (9:44) Section 15.6 Calculating Equilibrium Concentration Example Problem
	#2 (5:45)
	Section 15.7 Le Chatlier's Principle (2:46)
	Section 15.7 The Effect of Changing Concentration (4:57)
	Section 15.7 The Effect of Pressure Changes (4:20)
	Section 15.7 The Effect of an Inert Gas, Temperature, and Catalysis (5:17)
· ·	g Chemistry Pre-Lecture #7 Assignment (due 8:00 am Tues., Jan. 29th):
	Fundamentals of Equilibrium Concentration Calculations
	Applying Le Chatelier's Principle
MA	STERING CHEMISTRY GRADED HOMEWORK ASSIGNMENT #3
	DUE SUNDAY, JANUARY 27 th at 11:59 PM
LECTURE #7: TL	JESDAY, JANUARY 29 th
	where Lecture Questions
_	Calculating Equilibrium Concentrations (15.52)
	Calculating Equilibrium Concentrations (15.55)
	LeChatlier's Principle (15.61)
	LeChatlier's Principle (15.66)
	Disturbing Equilibrium (15.62)
Lecture V	Videos to Watch or Textbook Sections to Read Before Lecture #8:
	Section 16.1 Acid-Base Equilibria (4:09)
	Section 16.2 Bronsted-Lowry Acids and Bases (6:22)
	Section 16.2 Conjugate Acid-Base Pairs (5:37)
	Section 16.2 Relative Strengths of Acids and Bases (7:23)
	Section 16.2 Relative Strengths of Acids and Bases Example Problem
	(3:12)
	Section 16.3 The Autoionization of Water (5:25)
	Section 16.4 The pH Scale (4:41)
	Section 16.5 pH of Strong Acids (5:23)
	g Chemistry Pre-Lecture #8 Assignment (due 8:00 am Thurs., Jan. 31st):
	Conjugate Pairs
	Acid-Base Relationships in Water
ر ت	pH and Kinetics
LECTURE #8: TH	HURSDAY, JANUARY 31 st
Pollevery	where Lecture Questions
	Conjugate Acid-Base Pairs (16.16)
	Relative Strengths of Acids and Bases (16.23)
	Autoionization of Water (16.29)
•	pH Scale (16.38)
□ <u> </u>	pH of Strong Acids (16.43)

Lecture Videos to Watch or Textbook Sections to Read Before Lecture #9: Section 16.6 pH of Weak Acids Example Problem #1 (4:48) Section 16.6 pH of Weak Acids Example Problem #2 (9:34) Section 16.6 Polyprotic Acids (5:58) Section 16.6 Percent Ionization (4:58) Section 16.7 Weak Bases (4:33) Section 16.8 Relationship Between K _a and K _b (4:30) Mastering Chemistry Pre-Lecture #9 Assignment (due 8:00 am Tues., Feb. 5th): PhET Simulation – Acid-Base Solutions Weak Polyprotic Acids Percent Ionization
MASTERING CHEMISTRY GRADED HOMEWORK ASSIGNMENT #4 DUE SUNDAY, FEBRUARY 3 rd at 11:59 PM
LECTURE #9: TUESDAY, FEBRUARY 5 th
Polleverywhere Lecture Questions
\square K_a and p K_a (16.49)
□ pH of weak acids/weak bases (16.59)
☐ Percent Ionization (16.63)
☐ Calculating the pH of a Polyprotic Acid Solution (16.67 – Copy)
\square Relationship Between K_a and K_b (GIST 16.11)
Lecture Videos to Watch or Textbook Sections to Read Before Lecture #10:
☐ Section 16.9 Acid-Base Properties of Salt Solutions Part 1 (5:02)
☐ Section 16.9 Acid-Base Properties of Salt Solutions Part 2 (5:22)
☐ Section 16.10 Acid-Base Behavior and Chemical Structure (4:36)
☐ Section 16.10 Oxyacids (5:53)
☐ Section 16.10 Carboxylic Acids (4:37)
☐ Section 16.11 Lewis Acids and Bases (3:12)
Mastering Chemistry Pre-Lecture #10 Assignment (due 8:00 am Thurs., Feb. 7th):
☐ Acid-Base Properties of Salt Solutions
☐ Relative Strengths of Oxyacids, Carboxylic Acids, and Amines
☐ Lewis Acids and Bases
LECTURE #10: THURSDAY, FEBRUARY 7 th
Polleverywhere Lecture Questions
☐ Strength of Salt Solutions (16.78)
☐ pH of Salt Solutions (16.81)
☐ Factors the Affect Acid Strength (16.92)
☐ Carboxylic Acids (16.87)
☐ Lewis Acids and Bases (16.97)
Lecture Videos to Watch or Textbook Sections to Read Before Lecture #11:
□ Review For Exam #1: Thursday, February 14 th 8:00 – 9:45 pm
Mastering Chemistry Pre-Lecture #11 Assignment (due 8:00am Thurs., Feb. 14th):
☐ Practice Midterm Exams

MASTERING CHEMISTRY GRADED HOMEWORK ASSIGNMENT #5 DUE SUNDAY, FEBRUARY 10th at 11:59 PM

LECTURE #11: TUESDAY, FEBRUARY 12 th
Polleverywhere Lecture Questions
☐ Exam #1 Self Assessment
Lecture Videos to Watch or Textbook Sections to Read Before Lecture #12:
☐ Review For Exam #1: Thursday, February 14 th 8:00 – 9:45 pm
Mastering Chemistry Pre-Lecture #12 Assignment (due 8:00am Thurs., Feb. 14th):
☐ Practice Midterm Exams
LECTURE #12
MIDTERM EXAM #1 REVIEW SESSION
CHAPTERS 13, 14, 15, and 16.1-16.5
EXAM #1: THURSDAY, FEBRUARY 14 th 8:00 – 9:45 PM
Lecture Videos to Watch or Textbook Sections to Read Before Lecture #13:
☐ Section 17.1 The Common Ion Effect (5:44)
☐ Section 17.2 Buffer Solutions (3:42)
☐ Section 17.2 How Buffers Work (5:35)
☐ Section 17.2 Calculating pH of Buffer Solutions (5:51)
☐ Section 17.2 Buffer Example Problem (10:50)
☐ Section 17.2 Choosing the Proper Buffer Solution (7:56)
☐ Section 17.2 Buffer Example Problem #2 (4:21)
☐ Section 17.3 Acid-Base Titrations (11:54)
☐ Section 17.3 Weak Acid-Strong Base Titration pH Before Base Added (2:38)
☐ Section 17.3 Weak Acid-Strong Base Titration pH After Base is Adde (3:51)
 Section 17.3 Weak Acid-Strong Base Titration pH After More Base is Added (2:41)
☐ Section 17.3 Weak Acid-Strong Base Titration pH at Endpoint (6:04)
☐ Section 17.3 Weak Acid-Strong Base Titration pH Beyond Endpoint (3:53)
☐ Section 17.3 Weak Acid-Strong Base Titration Curve (4:53)
Mastering Chemistry Pre-Lecture #13 Assignment (due 8:00 am Tues., Feb. 19th):
☐ Base/Acid Ratios in Buffers
☐ Titrations

MASTERING CHEMISTRY GRADED HOMEWORK ASSIGNMENT #6
DUE SUNDAY, FEBRUARY 17th at 11:59 PM

LECTURE #13:	TUESDAY, FEBRUARY 19 th
Pollever	ywhere Lecture Questions
	Common Ion Effect (17.15)
	Buffered Solutions (17.23)
	Buffered Solutions (17.26)
	Acid-Base Titrations (17.41)
	Acid-Base Titrations (17.46)
	Videos to Watch or Textbook Sections to Read Before Lecture #14:
	Section 17.4 Overview of Solubility (6:07)
	Section 17.4 The Solubility Product Constant (8:45)
	Section 17.4 K _{sp} Example Problem (7:47)
	Section 17.4 Ranking the Solubility of Slightly Soluble Salts given the
	K _{sp} Part I (9:14)
	Section 17.4 Ranking the Solubility of Slightly Soluble Salts given the
	K _{sp} Part II (12:47)
	Section 17.6 Criteria for Precipitation (11:49)
	Section 17.6 If Two Solutions are Mixed Will a Precipitate Form?
	(7:30)
	Section 17.6 Order of Precipitation, Minimum Concentration Needed
	to Facilitate Precipitation, and Best Separation (14:56)
	ng Chemistry Pre-Lecture #14 Assignment (due 8:00 am Thurs., Feb. 21st):
	Introduction to Solubility and the Solubility Product Constant
	Solubility Constant Expression
	Fractional Precipitation of Metal Carbonates
	•
LECTURE #14:	THURSDAY, FEBRUARY 21 st
	ywhere Lecture Questions
	Determining K _{sp} Using Experimental Data (17.113)
	Stoichiometry of the K _{sp} Lab (17.103)
	Relating K _{sp} to Molar Solubility (17.51)
	Selective Precipitation (17.71)
	Best Separation (17.72)
	Videos to Watch or Textbook Sections to Read Before Lecture #15:
	Section 17.5 Common Ion Effect (11:32)
	Section 17.5 pH Effects (4:26)
	Section 17.5 How does adding acid/base influence solubility? (11:01)
	Section 17.5 Does Zinc Hydroxide follow the rules we've discussed so
	far? (4:27)
	Section 17.5 Complex Ion Formation and Coordination Complexes
	(7:33)
	Section 17.5 Re-analyzing Zinc Hydroxide (5:53)
	Section 17.5 Solubility of Zinc Hydroxide in 15 M NH ₃ (11:55)
	Section 17.5 Determining the Concentration of Free Metal Cations in
	Solution (13:25)
	Section 17.5 Amphoterism (6:11)

\square Section 17.5 Solubility of Al(OH) ₃ in 15 M NH ₃ (13:56)
☐ Section 17.5 Molar Solubility of Al(OH) ₃ in 15 M NH ₃ continued
(10:28)
☐ Section 17.5 Amphoteric Effects on Solubility (4:10)
Mastering Chemistry Pre-Lecture #15 Assignment (due 8:00 am Tues., Feb. 26 th):
☐ The Effect of Acid on Solubility
· · · · · · · · · · · · · · · · · · ·
☐ Acid Rain: Effect on Solubility of Calcium Carbonate
☐ Solubility of Zinc Hydroxide in Basic Solution
MASTERING CHEMISTRY GRADED HOMEWORK ASSIGNMENT #7
DUE SUNDAY, FEBRUARY 24th at 11:59 PM
LECTURE #15: TUESDAY, FEBRUARY 26 th
Polleverywhere Lecture Questions
· · · · · · · · · · · · · · · · · · ·
☐ Common Ion (17.56)
□ pH Effects (17.59)
☐ Complex Ion Formation (17.64)
☐ Free Ion Concentration (17.63)
☐ Amphoteric Effects (17.99)
☐ Factors Influencing Solubility (17.106)
Lecture Videos to Watch or Textbook Sections to Read Before Lecture #16:
☐ Section 19.1 Thermodynamics (11:13)
☐ Section 19.2 Spontaneous Process and Entropy (10:58)
☐ Section 19.2 Mathematical Definition of Entropy (9:10)
☐ Section 19.3 Macro and Micro States (13:04)
☐ Section 19.3 Comparing Entropy of Various Systems (6:39)
☐ Section 19.3 2 nd Law of Thermodynamics (11:43)
☐ Section 19.3 3 rd Law of Thermodynamics (9:58)
Mastering Chemistry Pre-Lecture #16 Assignment (due 8:00 am Thurs., Feb. 28th):
Qualitative Predictions About Entropy
☐ The Boltzmann Equation
☐ Entropy and the Second Law of Thermodynamics
LECTURE #16: THURSDAY, FEBRUARY 28 th
Polleverywhere Lecture Questions
☐ Enthalpy and Entropy (19.1)
☐ Entropy and Microstates (19.33)
☐ Spontaneous Reactions (19.11)
☐ Signs of Enthalpy and Entropy (19.3 – Copy)
☐ Comparing Entropy (19.48)
☐ Spontaneous Reactions and Temperature (19.66)
☐ Entropy of the Solution Process
Lecture Videos to Watch or Textbook Sections to Read Before Lecture #17:
☐ Section 19.5 Free Energy
☐ Section 19.5 Predicting the Sign of Delta G (5:06)

□ Section 19.6 Free Energy Under Non-standard Conditions (14:40) □ Section 19.6 Thermochemistry of the Haber Process (14:34) Mastering Chemistry Pre-Lecture #17 Assignment (due 8:00 am Tues., Mar. 5th): □ Interactive Activity – Temperature Dependence of Entropy □ Gibbs Free Energy: Temperature Dependence □ Free Energy and the Reaction Quotient □ Gibbs Free Energy and Equilibrium
MASTERING CHEMISTRY GRADED HOMEWORK ASSIGNMENT #8 DUE SUNDAY, MARCH 3 rd at 11:59 PM
Polleverywhere Lecture Questions ☐ Gibbs Free Energy (19.83) ☐ Gibbs Free Energy and Equilibrium (19.85) ☐ How Thermochemistry Relates to Solubility (19.112 – Copy) ☐ Thermochemistry Lab Data Lecture Videos to Watch or Textbook Sections to Read Before Lecture #18: ☐ Review For Exam #2: Thursday, March 7th 8:00 – 9:45 pm Mastering Chemistry Pre-Lecture #12 Assignment (due 8:00 am Thurs., Mar. 7th): ☐ Practice Midterm Exam
LECTURE #18: THURSDAY, MARCH 7 th MIDTERM EXAM #2 REVIEW SESSION CHAPTERS 16.6 – 16.11, 17, and 19.1 – 19.4
EXAM #2: THURSDAY, MARCH 7 th 8:00 – 9:45 PM
SPRING BREAK
LECTURE #19: TUESDAY, MARCH 19 th INTRODUCTION TO RESEARCH INVESTIGATION OF THE RETENTION CAPACITY OF SOILS FOR METALS
Lecture Videos to Watch or Textbook Sections to Read Before Lecture #20: □ Section 20.1 Electrochemistry Observations (11:22) □ Section 20.1 Electrochemistry (11:44) □ Section 20.3/20.4 Silver-Copper Voltaic Cell Part 1 (7:15) □ Section 20.3/20.4 Silver-Copper Voltaic Cell Part 2 (10:23) □ Section 20.3/20.4 Silver-Iron Voltaic Cell (6:22) □ Section 20.3/20.4 Voltaic Cells (11:20) Mastering Chemistry Pre-Lecture #20 Assignment (due 8:00 am Thurs., Mar. 21st): □ Animation – Analysis of a Copper-Zinc Voltaic Cell □ A Nickel-Aluminum Galvanic Cell

LECTURE #20.	THURSDAY, MARCH 21 st
	rywhere Lecture Questions
	Redox Reactions (20.3 Copy)
	Redox Reactions (20.15)
	Voltaic Cells (20.27)
	Voltaic Cell Stoichiometry (20.37)
	Voltaic Cell Demo
	Videos to Watch or Textbook Sections to Read Before Lecture #21:
	Section 20.2 Balancing Redox Reactions (14:43)
	Section 20.5 E _{cell} and Delta G Part 1 (10:28)
	Section 20.5 E _{cell} and Delta G Part 2 (5:24)
	Section 20.6 Cell Potential and Concentration (8:33)
	Section 20.6 Application of the Nernst Equation (7:51)
Masteri	ng Chemistry Pre-Lecture #21 Assignment (due 8:00 am Tues., Mar. 26th):
	Balancing Redox Reactions and Stoichiometry
	Interactive Activity - The Relationship Among Ecell, Keq, and Gibbs Free
	Energy
	The Nernst Equation and pH
М	ASTERING CHEMISTRY GRADED HOMEWORK ASSIGNMENT #9 DUE SUNDAY, MARCH 24 th at 11:59 PM
LECTURE #21:	TUESDAY, MARCH 26 th
	ywhere Lecture Questions
	Balancing Redox Reactions (20.23)
	Balancing Redox Reactions (20.24)
	E_{cell} and ΔG (20.52)
	Non-standard Cell Potentials (20.68)
	Magnitude of Cell Potential (20.69)
	Nernst Equation (20.71)
	Videos to Watch or Textbook Sections to Read Before Lecture #22:
	Section 20.9 Electrolysis (2:53)
	Section 20.9 Stoichiometry of Electrolytic Processes (4:51)
	Section 20.9 Electrolysis Example (3:34)
	Section 20.9 Electrolysis of H ₂ O (8:39)
	Section 20.9 Calculating Concentration in Electrolysis (5:35)
	ng Chemistry Pre-Lecture #22 Assignment (due 8:00 am Thurs., Mar. 28th):
	Simulation – Electrolysis
LECTURE #22:	THURSDAY, MARCH 28 th
	where Lecture Questions
	Electroplating (20.91)
	Electrolysis and Concentration (20.92)
	Cell Potential and pH (20.68)
	Calculating Cell Potential (20.71)

Laborat □ Masterii	Interpreting Electrochemical Lab Data ory Manual Sections to Read Before Lecture #23: Research Project ng Chemistry Pre-Lecture #23 Assignment: none
MA	ASTERING CHEMISTRY GRADED HOMEWORK ASSIGNMENT #10 DUE SUNDAY, MARCH 31 st at 11:59 PM
LECTURE #23:	TUESDAY, APRIL 2 nd
	ANALYZING RESEARCH DATA
INVE	STIGATION OF THE RETENTION CAPACITY OF SOILS FOR METALS
	Videos to Watch or Textbook Sections to Read Before Lecture #24: Section 23.1 Transition Metals and Coordination Complexes (4:35) Section 23.1 The Electromagnetic Spectrum and Color (6:06) Section 23.1 Orbital Energies (9:07)
	Section 23.1 UV-Vis Spectroscopy (7:11) Section 23.1 UV-Vis Spectroscopy Part 2 (9:29)
	Section 23.1 Electron Configuration of Transition Metal Complexes (9:05)
	Section 23.2 Chemistry of Coordination Complexes (9:24)
	Section 23.2 Coordination Complexes Before 1893 (7:37) Section 23.2 Modern Day Formulas for Transition Metal Complexes (8:24)
	Section 23.4 Arranging Ligands Around the Transition Metal Center: Introducing Isomers (15:01)
	Section 23.4 Isomer Overview (3:53)
	Section 23.4 Linkage Isomers (6:07)
	Section 23.4 Coordination Sphere Isomers (3:49) Section 23.4 Geometric Isomers (8:18)
	Section 23.4 Optical Isomers/Enantiomers (13:50)
Masterii	ng Chemistry Pre-Lecture #24 Assignment (due 8:00 am Thurs., Apr. 4th): Electron Configuration and Oxidation Numbers
	Coordination Complexes
	Visualizing Complexes
Ц	Isomers and Enantiomers
LECTURE #24:	THURSDAY, APRIL 4 th
	ywhere Lecture Questions
	Color of Transition Metal Complexes (Color of Transition Metal Complexes)
	The Electromagnetic Spectrum (The Electromagnetic Spectrum)
	Absorbed vs. Observed Colors (Absorbed vs. Observed Colors)
	The UV-Vis Spectrometer (The UV-Vis Spectrometer)

	Electron Configuration of Transition Metal Cations (Electron
	Configuration of Transition Metal Cations)
	Coordination Number and Oxidation States (Coordination Number
	and Oxidation States)
	Isomers (Isomers)
	Videos to Watch or Textbook Sections to Read Before Lecture #25:
	Section 23.2 Complex Formation: The Metal-Ligand Bond (3:10)
	Section 23.2 Transition Metal Complexes: Oxidation States,
	Coordination Numbers, and Geometry (5:51)
	Section 23.2 Stereochemistry (1:37)
	Section 23.2 Determining if an ML ₄ Complex is T _d or Square Planar
	(1:40)
	Section 23.2 Example Problem: Determining if an ML ₄ Complex is T _d
	or Square Planar (6:44)
	Section 23.3 Ligands (7:15)
	Section 23.6 Bonding Theories of Transition Metal Complexes (3:38)
	Section 23.6 Crystal Field Theory Introduction (5:51)
	Section 23.6 Shapes of d orbitals (7:38)
	Section 23.6 Orbital Overlap and Orbital Energies in Crystal Field
	Theory (10:25)
	Section 23.6 Crystal Field Theory (9:15)
	Section 23.6 The Spectrochemical Series (12:05)
	Section 23.6 High Spin/Low Spin Complexes (7:32)
	Section 23.6 Octahedral Field Splitting vs. Tetrahedral Field Splitting
	(8:52)
Ц	Section 23.6 Octahedral Field Splitting vs. Square Planar Field
	Splitting (7:38) Section 22.2 The Chelete Effect (10:47)
	Section 23.3 The Chelate Effect (10:47)
	ng Chemistry Pre-Lecture #25 Assignment (due 8:00 am Tues., Apr. 9 th): Color of Complexes
	Crystal Field Theory
	Magnetism and Crystal Field Theory
	Complex Ions and Multiple Equilibria
_	complex ions and Malaple Equilibria
MA	ASTERING CHEMISTRY GRADED HOMEWORK ASSIGNMENT #11
	DUE SUNDAY, APRIL 7 th at 11:59 PM
	TUESDAY, APRIL 9 th
	ywhere Lecture Questions
	Crystal Field Splitting (Crystal Field Splitting)
	Number of Unpaired Electrons (Number of Unpaired Electrons)
	Magnetism (Magnetism)
	Magnetism (Magnetism)
	Relating Magnetism to Experimental Data (Relating Magnetism to
	Experimental Data)

LECTURE #26: THURSDAY, APRIL 11th MIDTERM EXAM #2 REVIEW SESSION CHAPTERS 19.1 – 19.5, 20, Research Project, and 23.1 – 23.4

EXAM #2: THURSDAY, APRIL 11th 8:00 – 9:45 PM

□ □ Masterin □ □ □	Videos to Watch or Textbook Sections to Read Before Lecture #27: Nuclear Chemistry Videos Still Need to be Made ag Chemistry Pre-Lecture #27 Assignment (due 8:00 am Tues., Apr. 16th): Modes of Radioactive Decay Nuclear Decay Equations The Uranium Decay Series Identification and Characterization of Unstable and Stable Nuclei Radiocarbon Dating
MASTERING CHEMISTRY GRADED HOMEWORK ASSIGNMENT #12 DUE SUNDAY, APRIL 14 th at 11:59 PM	
LECTURE #27: TUESDAY, APRIL 16 th	
Pollever	ywhere Lecture Questions
	Nuclear Stability (21.20)
	Nuclear Decay Equations (21.27)
	Rates of Radioactive Decay (21.35)
	Balancing Nuclear Reactions (21.60)
	Radiocarbon Dating (21.39)
LAST LECTURE: THURSDAY, APRIL 18 th	
	Cancer Research
	Special Guest Speaker
	Most Entertaining Evaluation Comments
	Closing Inspirational Remarks
	CTERING CHELLICTRY OR A REP HOLDERWORK ACCIONATES 114

MASTERING CHEMISTRY GRADED HOMEWORK ASSIGNMENT #13
DUE SUNDAY, APRIL 21st at 11:59 PM

FINAL EXAM REVIEW SESSION TUESDAY, APRIL $23^{\rm rd}$ 3:00 - 4:30 PM 1000 McPHERSON CHAPTERS 13-23

FINAL EXAM: MONDAY, APRIL 29th 8:00 – 9:45 AM